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Vector-Valued Image Processing
by Parallel Level Sets

Matthias Joachim Ehrhardt, and Simon R. Arridge

Abstract—Vector-valued images such as RGB colour images
or multi-modal medical images show a strong inter-channel
correlation which is not exploited by most image processing
tools. We propose a new notion of treating vector-valued images
which is based on the angle between the spatial gradients of
their channels. By minimizing a cost functional which penalizes
large angles, images with parallel level sets can be obtained.
After formally introducing this idea and the corresponding cost
functionals we discuss their Gâteaux derivatives which lead
to a diffusion like gradient descent scheme. We illustrate the
properties of this cost functional by several examples in denoising
and demosaicking of RGB colour images. They show that parallel
level sets are a suitable concept for colour image enhancement.
Demosaicking with parallel level sets gives visually perfect results
for low noise levels. Furthermore, the proposed functional yields
sharper images than the other approaches in comparison.

Index Terms—parallel level sets, vector-valued images, varia-
tional methods, non-linear diffusion, denoising, demosaicking

I. INTRODUCTION

THERE ARE many imaging applications where more than
one piece of information is given at one single point in

space. A well known example is an RGB colour image where
at any point three numbers are given which encode the amount
of red, green and blue colour. On the one hand you can think
of an RGB image as three scalar-valued images or you can
think of it as a single vector-valued image. Another example
is given in medical imaging where different scanners measure
different properties for the same spatial point - for instance a
computed tomography (CT) scanner measures the absorption
of X-rays by the body or a magnetic resonance tomography
(MR) scanner can measure the response of water molecules to
a magnetic field. Beside these a positron emission tomography
(PET) or a single photon emission computed tomography
(SPECT) scanner can obtain functional properties like blood
flow or metabolic activity. Modern scanners, like SPECT/CT
or PET/MR, combine these in one device and can obtain so a
vector-valued image where the different channels of the vector
correspond to different properties of the tissue [1], [2].

In such cases the channels can be but do not have to be
correlated. Figure 1 shows the colour channels of the test
image “pyramid”. It is clearly visible that the objects in this
figure are encoded in all three colours. The correlation of the

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

M. J. Ehrhardt and S. R. Arridge are with the Centre for Medical
Image Computing, Medical Physics & Bioengineering Department, University
College London, The Engineering Front Building, Malet Place, WC1E 6BT,
UK (e-mail: matthias.ehrhardt.11@ucl.ac.uk).

blue

green

red
Fig. 1. The image “pyramid” and its colour channels. The main structures
of the image are visible on all channels.

colour channels especially for the edges in natural images was
also observed by [3]. “All three channels are very likely to have
the same texture and edge locations.” Likewise, in medical
imaging the channels of a PET/MR scanner are likely to be
correlated as different tissue types have properties that are
interdependent. This dependency is what we want to exploit
in this paper.

Most image processing tools are designed for scalar-valued
images or when applied to vector-valued images they process
these independently channel by channel, which fails to exploit
the information expressed in the correlation between chan-
nels. One prominent example of using information between
channels is colour total variation [4]. This extension of the
scalar-valued version [5] leads to a non-linear diffusion scheme
where the diffusivity depends on all channels. This approach
is extended by [6] where several variational methods in image
processing of vector-valued images are combined using the
concept of Polyakov action which yields the so called Nambu
functional. An approach to vector-valued diffusion based on
statistical correlation, but still channel-wise was developed in
[7]. In this paper we propose a new approach emphasising
the geometric correlation between channels by considering the
degree of parallelism between the level sets of each channel.

In our approach we assume that the components of the
vector-valued image are not independent. Therefore, we try
to align their gradients which leads to parallel level sets and
hence to similar structures. We will see that this approach of
enhancing common structures can be used in image processing
applications like denoising or demosaicking of colour images
[3], [8].

We distinguish this usage of the term “level sets” from
its usage in applications that evolve a (N + 1) dimensional
function such that its zero-level-set describes the evolution
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and topological change in the boundary between two or more
objects in an image, for example for segmentation [9], [10].

The rest of this paper is organized as follows. First of
all, we give a brief overview about variational approaches
in image processing and discuss diffusion equations which
naturally arise from gradient based cost functionals. In section
II we introduce the basic concepts how to handle parallel level
sets and propose a variational approach to obtain these. Its
Gâteaux derivative is then computed in section III. Finally, in
section IV we present a simple example which illustrates the
behaviour of the levels sets and their trend towards parallelism.
Moreover, we present results of denoising and demosaicking
of colour images and compare it to other approaches used
for image enhancement. Conclusions and discussions are pre-
sented in section V.

A. Overview

As in the case of scalar-valued images, problems such as
denoising, inpainting, demosaicking, or deblurring for vector-
valued images can be cast into the form of an inverse problem
by seeking a minimum of the functional

Φ(z)
def
=

1

2
‖Az − g‖2 + αR(z) (1)

where g is the observed data, z = (zk)k=1,...,K : Ω ⊂ RN →
RK the vector-valued image, R a cost functional and α the
trade-off parameter between fidelity of the data fit and a-priori
information of the solution.

As we will show in section III, for some choices of R, a
solution of equation (1) is the stationary point (in time) of the
partial differential equation (PDE)

∂tΦ = −DΦz = −A∗(Az − g) + α div[K∇z] (2)

where the diffusivity K is in general a spatially varying N·K×
N ·K matrix depending on the image z, i.e.

K =


K1 T1,2 . . . T1,K

T2,1
. . . . . .

...
...

. . . . . . TK−1,K

TK,1 . . . TK,K−1 KK

 ,

and the divergence and gradient are defined component-wise.
Furthermore, we call the N×N sub-matrices Ki within-channel
diffusivities and the Ti,j are called cross-diffusivities. If any of
the sub-matrices is of the form c · I where c is a scalar and
I the identity matrix we denote the whole matrix c as well.
The special case when all sub-matrices are multiples of the
identity matrix is called isotropic, otherwise anisotropic. In
this paper all diffusion equations will be isotropic. We need to
distinguish two other special cases. If the sub-matrices Ki, Ti,j
depend on the image itself, i.e. Ki = Ki(z), Ti,j = Ti,j(z),
we call this non-linear diffusion, otherwise linear. Again, all
diffusion equations considered in this work will be non-linear.
Finally, if any cross-diffusivity Ti,j is non-zero we call it cross-
channel diffusion, otherwise channel-wise diffusion. This will
be a key point later on. Important to note is, that even when
the diffusion is just channel-wise, the system of PDEs can be
coupled if the diffusivities Ki depend on other channels j 6= i.

As mentioned above, the idea in this paper is to consider
a particular form of isotropic, non-linear, cross-channel dif-
fusion, in which the penalty term R(z) is designed to align
the components of z such that their level sets are parallel.
We make precise our meaning of parallelism for level sets in
section II.

II. MODELLING A VARIATIONAL APPROACH TO ENFORCE
PARALLEL LEVEL SETS

A. Parallel Level Sets

Consider vector-valued images z = (zk)k=1,...,K which
are defined without loss of generality on the unit cube
Ω

def
= [0, 1]N ⊂ RN , that is we have z : Ω → RK and

zk : Ω → R. Moreover, we have to assume that the channels
zk are continuously differentiable, i.e. zk ∈ C1(Ω). It is well
known that the gradient ∇zk is orthogonal in each point to
the level sets {x ∈ Ω : zk(x) = const}.

We now restrict ourselves to the case of two channels, i.e.
K = 2. To simplify the notation we denote the two channels of
z by u and v. We say that the level sets of u and v are parallel
if the gradients ∇u(x) and ∇v(x) are parallel at each point
x ∈ Ω, i.e. ∇u(x) = s(x)∇v(x) or ∇v(x) = s(x)∇u(x) for
some scalar s(x) ∈ R.

It is common knowledge that

| 〈∇u(x),∇v(x)〉 | = | cos(θ(x))| ‖∇u(x)‖ ‖∇v(x)‖
≤ ‖∇u(x)‖ ‖∇v(x)‖ ,

and equality if and only if ∇u(x) and ∇v(x) are parallel. The
brackets 〈·, ·〉 denote the Euclidean scalar product and ‖·‖ the
Euclidean norm in RN . Hence the measure

‖∇u(x)‖ ‖∇v(x)‖ − | 〈∇u(x),∇v(x)〉 | (3)

is non-negative and measures locally how far from paral-
lelism we are. The same holds true if strictly increasing
functions ϕ,ψ are used and we define a general local measure
f(∇u(x),∇v(x)) by

ϕ(ψ[‖∇u(x)‖ ‖∇v(x)‖]− ψ[| 〈∇u(x),∇v(x)〉 |]). (4)

Valid choices for ϕ and ψ are for instance s 7→
s, s2,

√
s, log(s), exp(s).

To obtain a global measure we integrate over the whole
domain, i.e.

R(u, v)
def
=

∫
Ω

f(∇u(x),∇v(x)) dx. (5)

In the special case ϕ(s) =
√
s and ψ[s] = s2 equation (4) is

equivalent to the magnitude of the vector product |∇u(x) ×
∇v(x)| = | sin(θ(x))|. Then equation (5) corresponds to the
Nambu functional [6] with the tensor of [11]. It is also used
for joint reconstruction of multi-physics [12], [13].

The proposed model is minimized when the gradients are
parallel or zero. Therefore we implicitly penalize non-zero
gradients as well. Another choice to measure parallelism of
level sets would be to normalize equation (4) by the norm
of the gradients. This measure is more natural as the level
sets do not depend on the magnitudes of the gradients but
bears two disadvantages. First, we would need to assume that
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the gradients do not vanish or need to find a solution in this
case. Second, our numerical experiments have shown that a
normalized version leads to instabilities as gradients of arbi-
trary magnitude are equally likely solutions. The normalized
version with the choices ϕ(s) =

√
s and ψ[s] = s2 is known as

normalized gradient field and serves as a distance measure in
registration of medical images from different modalities [14].

B. Arbitrary Vector-Valued Images

As we have seen the stated approach is made for just
two channels. One way to extend this approach to arbitrary
dimensional vector-valued images is to define the functional
pairwise, i.e. for any image z : Ω→ RK we define

R(z)
def
=
∑
k<l

R(zk, zl). (6)

where the summation is only required for k < l due to the
symmetry of the arguments of R(zk, zl).

III. GÂTEAUX DERIVATIVES

This section is dedicated to the Gâteaux derivatives [15, p.
135] of the functional R which is the key for derivation of
a suitable minimization scheme. We will derive those from a
very general proposition.

If we fix v our proposed functional (and many others) can
be written as R(u)

def
=
∫

Ω
f(∇u(x)) dx =

∫
Ω
f(∇u) dx. From

here onwards we skip the argument x to simplify the notation.

Proposition III.1. Let f : RN → R be a twice continuously
differentiable function. Then the Gâteaux derivative of R :
C1(Ω)→ R,R(u) =

∫
Ω
f(∇u) dx at u ∈ C1(Ω) is given by

DRu : C1(Ω)→ R with

DRu(h) = −
∫

Ω

hdiv[∇f(∇u)] dx+

∫
∂Ω

h 〈∇f(∇u), n〉dx

where n is the outer normal vector of Ω.

Proof: Let h ∈ C1(Ω) be any function and ε > 0. If we
treat f(u+ εh) as a function in ε we derive

R(u+ εh) =

∫
Ω

f(∇u+ ε∇h)dx

=

∫
Ω

f(∇u) + ε 〈∇f(∇u),∇h〉dx+O(ε2)

by exploiting the Taylor expansion around zero [16, p. 67].
Using the definition of the Gâteaux derivative [15, p. 135]
and Green’s first identity [17, p. 534] we finally get

DRu(h)
def
= lim

ε→0

1

ε
{R(u+ εh)−R(u)}

= lim
ε→0

1

ε

{∫
Ω

f(∇u) + ε 〈∇f(∇u),∇h〉

− f(∇u)dx+O(ε2)

}
=

∫
Ω

〈∇f(∇u),∇h〉dx

= −
∫

Ω

hdiv[∇f(∇u)]dx+

∫
∂Ω

h 〈∇f(∇u), n〉dx.

We note that the assumption that f is twice continuously
differentiable is sufficient but may not be necessary.

To obtain the Gâteaux derivative of the proposed method
we have to approximate the Euclidean norm smoothly. For a
parameter β > 0 we define a smooth approximation of the

Euclidean norm of a vector x as ‖x‖β
def
=

√
‖x‖2 + β2. This

also makes the method more robust as small gradients, i.e.
‖∇u‖ � β, are treated like zero gradients. Then the function
f given by equation (4) becomes

f(∇u,∇v)
def
= ϕ(ψ[‖∇u‖β‖∇v‖β ]− ψ[| 〈∇u,∇v〉 |β2 ]).

(7)

Lemma III.2. Let ϕ,ψ be continuously differentiable func-
tions. For fixed ∇v the gradient of f : RN → R defined by
equation (7) at ∇u is given by

∇f(∇u) = κ(u, v)∇u+ τ(u, v)∇v

with coefficients

κ(u, v)
def
=
ψ′ [‖∇u‖β‖∇v‖β ] ‖∇v‖β

‖∇u‖β
ρ(u, v)

τ(u, v)
def
= −

ψ′
[
| 〈∇u,∇v〉 |β2

]
〈∇u,∇v〉

| 〈∇u,∇v〉 |β2

ρ(u, v)

ρ(u, v)
def
= ϕ′

(
ψ [‖∇u‖β‖∇v‖β ]− ψ

[
| 〈∇u,∇v〉 |β2

])
.

(8)

Proof: These results can be easily obtained by using the
multi-dimensional chain rule [16, p. 51].

As the functional R is symmetric in its arguments we can
extend these results to obtain the Gâteaux derivative in the joint
argument (u, v). From here onwards (also in the numerical
experiments) we will assume that our images have vanishing
normal derivatives at the boundary and denote this by C1

∗(Ω),
i.e. u ∈ C1

∗(Ω) if and only if it is continuously differentiable
with vanishing normal derivative at the boundary of Ω.

Theorem III.3. The Gâteaux derivative of R : C1
∗(Ω) ×

C1
∗(Ω)→ R given by (5) at (u, v) is given by

DR(u,v) = − div

[(
κ(u, v) τ(u, v)
τ(u, v) κ(v, u)

)
∇
(
u
v

)]
(9)

where the diffusivities κ and cross-diffusivities τ are defined
in (8).

It is important to note that taking the divergence, gradient
and matrix-vector product are defined channel-wise.

Proof: As the functional R is symmetric in its arguments
lemma III.2 is valid for v as well. The stated result is then
obtained by using proposition III.1 and writing those equations
in a vector format. The boundary term is zero because of the
vanishing normal derivatives.

It is straightforward to extend Theorem III.3 for the three
(or even arbitrary) channel case, e.g. RGB images.

Corollary III.4. The Gâteaux derivative of R : [C1
∗(Ω)]3 →

R defined as (6) at z = (z1, z2, z3) is given by

DRz = −div

 κ1 τ1,2 τ1,3
τ1,2 κ2 τ2,3
τ1,3 τ2,3 κ3

∇
z1

z2

z3

 (10)
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Fig. 2. The figure shows a toy example to illustrate the evolution to minimize the proposed parallel level set cost functional for the choice ϕ(s), ψ[s] = s.
(a) and (b) show the sequence of the images u and v. The initial images were chosen to be for (a) u(x) = exp[−(‖x‖∞ − µ1)2/ν2] and (b) v(x) =
1− exp[−(‖x‖1 − µ2)2/ν2]. Their corresponding level sets (contour lines) are shown in (c) and (d).

where κi
def
=
∑
j 6=i κ(zi, zj) and τi,j

def
= τ(zi, zj). For the

definition of κ and τ see equation (8).

A. Asymptotics of the Diffusivities

We now turn to the asymptotics of the diffusivities. Without
loss of generality we will just discuss the diffusivities for u. In
the limit when the information in v vanishes, i.e. ∇v → 0, we
would like that this complex diffusion simplifies to an edge
preserving denoising scheme, e.g. total variation denoising.
Therefore, the cross diffusivity τ(u, v) needs to converge to
zero. In case that both channels u and v are flat we want to
have isotropic diffusion as there are no edges to be preserved
or enhanced, i.e. κ(u, v) → 1. This is in general not true but
holds in a special case.

Proposition III.5. Let ϕ,ψ be continuously differentiable
with ϕ′ = 1 and ψ′ = 1. Then the diffusivities of the
Gâteaux derivative (9) fulfil the following properties. If ∇v →
0, then

κ(u, v)→ β

‖∇u‖β
τ(u, v)→ 0

and κ(u, v)→ 1, if ∇u,∇v → 0.

Proof: With the assumptions on the derivatives of ϕ and
ψ the diffusivities simplify to

κ(u, v) =
‖∇v‖β
‖∇u‖β

and τ(u, v) = − 〈∇u,∇v〉
| 〈∇u,∇v〉 |β2

.

The stated properties are now obvious.
Due to the desired asymptotics we only considered the

case ϕ(s), ψ[s] = s in our numerical experiments. It is likely
that there are other pairs of functions ϕ(s), ψ[s] so that these
asymptotics hold true but it is out of the scope of this paper
to characterize them all.

B. Colour Total Variation and Nambu Functional

As we will compare our method with colour total variation
and the Nambu functional we will state them and their
Gâteaux derivatives here.

Colour total variation [4], i.e. |z|CTV
def
=
√∑

i |zi|2TV
with |zi|TV

def
=
∫

Ω
‖∇zi‖β dxcan not be expressed directly

in our framework of proposition III.1. Nevertheless the
Gâteaux derivative is of form (10) with diffusivities

κi
def
=
|zi|TV
|z|CTV

1

‖∇zi‖
, τi,j

def
= 0. (11)

The other variational method we want to compare with is
the Nambu functional [6] which can be stated as

∫
Ω
η(z/β) dx

with

η(z)
def
=√

1 +
∑
i

‖∇zi‖2 +
∑
i<j

‖∇zi‖2 ‖∇zj‖2 − 〈∇zi,∇zj〉2.

Then the Gâteaux derivative takes again the form of equation
(10) with diffusivities

κi
def
=

1 +
∑
j 6=i

‖∇zj‖

 η(z)−1

τi,j
def
= −〈∇zi,∇zj〉 η(z)−1.

(12)

IV. NUMERICAL EXPERIMENTS

A. Implementation

The task at hand is to minimize equation (1) for our parallel
level set cost functional. As this functional is differentiable
we use tools from optimization to solve it [18]. A suitable
choice for large scale optimization with information about the
first but not the second derivative is the large scale version of
BFGS [18, p. 226]. This is a Quasi-Newton method where the
Hessian is approximated by a low rank matrix based only on
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original

std = 5 proposed Nambu NL Means

std = 10 proposed Nambu NL Means

std = 15 proposed Nambu NL Means

std = 25 proposed Nambu NL Means

std = 35 proposed Nambu NL Means
Fig. 3. Denoising of colour images. The results of the proposed parallel level set cost functional (proposed), the Nambu functional (Nambu) and non-local
means (NL Means) are shown. Not shown are the results for colour total variation due to space limitations. The figure shows the results for increasing noise
level, i.e. higher standard deviation (std). While non-local means shows colour fluctuations with increasing noise level the images obtained by the Nambu
functional are far blurrier than the one of the proposed parallel level sets cost functional. The parameters are chosen to maximize the peak signal-to-noise
ratio.

first derivative information. The line search algorithm is also
taken from [18, p. 59].

To complete the implementation details we will describe
how we discretized our Gâteaux derivative, see equation (10).

We use an image extension so as to satisfy the vanishing
normal derivatives as required by the assumptions in theorem
III.4. It is sufficient to have a look at the discretization of
div(κ∇u) at any point (i, j) as all the terms in (10) are of
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Fig. 4. The figure shows the denoising performance with respect to the noise level of the methods under comparison. The solid line is the mean PSNR and
SSIM taken over the five test images. The dotted lines indicates the minimal and maximal values. The results of non-local means and colour total variation
are clearly worse than the Nambu functional and the proposed parallel level sets functional. These two perform very similar with the proposed functional
almost all the time ahead of the Nambu functional.

5 10 15 25 35
0

4

8

pa
ra

m
et

er
α

Parallel Level Sets

5 10 15 25 35
0

50

100
Nambu

5 10 15 25 35
0

50

100
Colour Total Variation

5 10 15 25 35
2

7

12
Non-Local Means

5 10 15 25 35
2

9

16

pa
ra

m
et

er
β

optimized for PSNR
optimized for SSIM

5 10 15 25 35
0.0

3.5

7.0

optimized for PSNR
optimized for SSIM

5 10 15 25 35
0.0

2.5

5.0

optimized for PSNR
optimized for SSIM

5 10 15 25 35
0.00

0.07

0.14

optimized for PSNR
optimized for SSIM

noise level, standard deviation

Fig. 5. The parameters used for denoising are shown. The solid line represents the mean and the dotted lines the maximum and minimum of the parameters.
They were optimized to maximize the PSNR (blue) and the SSIM (green). The parameters used for non-local means are half the kernel size (α) and the
variance of the gaussian weights (β).
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Fig. 6. Left: The Bayer filter is used for demosaicking. At each pixel just
one detector aquires either red, green or blue. Therefore post-processing is
needed to get the full image at the desired resolution. Right: The Bayer filter
applied to a part of the test image “bugs”. It is clearly visible that at each
pixel location only information about one colour is present.

this form. By using a central differencing scheme on a sub-
grid, i.e. ∂1ui,j ≈ ui+1/2,j−ui−1/2,j , and linear interpolation
of any missing values, i.e. ui+1/2,j = 1/2[ui+1,j + ui,j ], we
get

div(κ∇u)i,j ≈
1

2

{ ∑
(k,l)∈N (i,j)

[κk,l + κi,j ]uk,l

− [κi,j + 4κi,j ]ui,j

} (13)

where the neighbourhood of (i, j) is defined as N (i, j)
def
=

{(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)} and κi,j
def
=∑

(k,l)∈N (i,j) κk,l. This spatial discretization is a compromise
between accurate and local approximation of the derivatives.
More accurate approximations would result in less spatial
resolution.

It is very important to note that we are not proposing an al-
gorithm but a cost functional which can be used in a variational
formulation. This is independent of the actual algorithm which
is used to minimize the corresponding objective function.

As we know the ground truth in our numerical simulations
the parameters α and β were chosen to be optimal. We will
discuss the trend with respect to noise of the chosen parameters
but further analysis is out of scope of this paper.

The MATLAB implementation of the method can be found
on the authors’ homepage [19].

B. Measuring Similarities of Images

To evaluate our results we define some objective criteria
measuring the denoising and demosaicking performance. We
decided to use the peak signal-to-noise ratio (PSNR) which
is probably the most common measure to evaluate image
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original original original original

Bayer filtered Bayer filtered Bayer filtered Bayer filtered

proposed proposed proposed proposed
Fig. 7. The figure shows the demosaicking results of the proposed parallel level set cost functional (proposed) for noise with low standard deviation (std
= 5). It can be see that the proposed method is capable to reconstruct the missing values without any colour artefacts. The difference of the reconstructed
image to the original one are hardly visible. The parameters are chosen to maximize the peak signal-to-noise ratio.
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Fig. 8. The figure shows the demosaicking performance with respect to the noise level of the methods under comparison. The solid line is the mean PSNR
and SSIM taken over the five test images. The dotted lines indicates the minimal and maximal values. The results of colour total variation are clearly worse
than the Nambu functional and the proposed parallel level sets functional. These two perform very similar with the proposed functional almost all the time
ahead of the Nambu functional. Especially for very high noise the proposed method performs clearly better.

enhancement performance. It is defined as PSNR(u, uδ)
def
=

10 log10

(
2552/ ‖u− uδ‖2L2

)
for images in the range of

[0, 255] [20, p. 272]. Next to this measure we also refer to the
measure of structural similarity (SSIM) which is often seen
to be closer to visual perception [21], [22]. It is extended to
colour channels as the mean of the SSIM of the channels.

C. A Simple Example

Let us start with a simple example which illustrates the
properties of our method and is shown in figure 2. The top
two rows (a), (b) show the evolutions of the start images u and
v on the left hand side towards minimization of the proposed
parallel level set cost functional with ϕ(s), ψ[s] = s. Below
in the bottom two rows (c), (d) the corresponding level sets
are displayed. It is clearly visible that from the initial shapes,
the images evolve to a common shape that is somewhat in

between both of the original shapes. Furthermore, we see that
the background is almost unchanged and that the gradients are
either parallel or zero.

We can see in detail how these shapes evolve to the steady
state. Looking at the top row, at first the shape evolves at all
eight common corners. At its own corners we can clearly see
the diffusing nature of this method (fourth image from the left
hand side). But after this usual diffusion these “shadows” move
back to a sharp image. At first sight it might appear that this
diffusion in the “wrong direction” could be explained by shock
filtering of Osher and Rudin [23] but as the corresponding
diffusivities κ are non-negative this can not be the reason.
Another plausible reason is that this is cross-channel diffusion
as the cross-diffusion coefficients τ are non-zero.
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Fig. 9. The parameters used for demosaicking are shown. The solid line represents the mean and the dotted lines the maximum and minimum. The parameters
were either optimized to maximize the PSNR (blue) or the SSIM (green).

D. Denoising of Colour Images

Next, we want to show that this method can be used very
well to denoise colour images. As test data we have chosen
some colour images of the Berkeley Segmentation Database
[24], [25]. For better comparison we used publicly available
noisy versions of those which are degraded by additive,
uncorrelated Gaussian noise of standard deviations of 5, 10,
15, 25 and 35 [26].

For the denoising case we compare our results with non-
local means [27], Nambu functional [6] and colour total
variation (CTV) [4]. For non-local means we used the im-
plementation available at [28]. As the others are variational
methods we implemented these for better comparison in the
same manner as we implemented the proposed parallel level
set method. This means equation (1) with the operator being
the identity is minimized by using a Quasi-Newton method
described above with the gradient (10) and diffusivities given
by (11) and (12).

The results for one test image are shown in figure 3. All
methods perform very well for a small noise level. When the
noise level increases non-local means shows unpleasant colour
fluctuations. While the Nambu functional smooths the images
a lot to get rid of the noise the proposed method yields sharper
images. Figure 4 shows the PSNR and SSIM with respect to
the noise level. Non-local means and colour total variation are
clearly worse than the Nambu functional and the proposed
parallel level sets functional. The performance of these are
very similar with the proposed functional most of the time
ahead of the Nambu functional.

In figure 5 the choices of parameters are plotted against
the noise level with the solid line indicating the mean and the
dotted lines the minimum and maximum over the five data sets.
It can be seen that the optimal parameters vary a lot between
different images. As expected there is an overall trend in the
regularization parameter α to decrease to zero as the noise
level decreases. This trend can also be seen for β and the
parallel level sets functional and non-local means but not for

the Nambu functional and colour total variation.

E. Demosaicking of Colour Images

Demosaicking is the reconstruction of a colour image which
is obtained by acquiring image data only at positions described
by the Bayer filter shown in figure 6. This means that at each
position either the intensity for red, green or blue is acquired.
This technique enables either to acquire a lot less data for
a given resolution or to enhance the resolution by using the
same amount of data. A detailed discussion of demosaicking
is given in [3], [8]. A typical data set for demosaicking is
given in figure 6.

The same data sets for demosaicking as for denoising is
used. These data sets are then degraded by the Bayer filter. To
compare our results we used only the variational methods as
it is straightforward to state the demosaicking problem as an
optimization problem (1) with the operator A performing the
Bayer filter.

Some results are given in figures 7 and 10. Figure 7 shows
that the proposed parallel level set cost functional can be
used to fully recover Bayer filtered images with low noise
levels. The difference between the reconstructed images and
the original images are hardly visible. A comparison with the
Nambu functional and colour total variation can be obtained
from figures 10. While colour total variation gives blurry
results with many colour artefacts the Nambu functional is
capable of eliminating most of these. It is clear that the
proposed method gives the sharpest images with only a few
colour artefacts in high noise levels.

Overall, we can see from figure 8 that colour total variation
performs much worse than the proposed parallel level set func-
tional and the Nambu functional. While the PSNR indicates
that the Nambu functional is slightly better the SSIM states
the opposite. For high noise levels they show that the proposed
method performs clearly better than the Nambu functional.

The parameters are plotted against the noise level in figure
9 where in all cases and for both parameters a trend towards
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Fig. 10. The figure shows the demosaicking results of the proposed parallel level sets cost functional (proposed), colour total variation (CTV) and the Nambu
functional (Nambu) for increasing noise level. The images obtained by CTV and Nambu functional are blurrier at noise with higher standard deviation (std).
CTV shows a lot colour artefacts due to the missing information of the Bayer filter for all noise levels. The parameters are chosen to maximize the peak
signal-to-noise ratio.

zero for decreasing noise level is visible. While the variation
of α with respect to the noise level seems to be almost constant
the variation of β is increasing with increasing noise level.

V. CONCLUSION

We propose a new framework based on parallel level
sets which can be used for image enhancement of vector-
valued images. In this approach we exploit the inter-channel
correlation which is inherent in many vector-valued images
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such as RGB images. The examples presented in this paper
indicate that exploiting this correlation leads to better, sharper
reconstructions with less artefacts. The results show that the
notion of parallel level sets is a promising tool for vector-
valued image processing tasks.

While we showed the usage for denoising and demosaick-
ing it is easily extendible to other applications where more
complicated operators are involved. This includes for instance
simultaneous reconstruction of multi-modal medical imaging.
Such applications will be the subject of future research.
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